

Oklahoma University Children's Medical Office Building

Oklahoma City, Oklahoma

AE Senior Thesis Final Report

> April 14, 2014 Jonathan Ebersole Structural Option Dr. Hanagan

• Introduction

- Building Statistics
- Project Team
- Existing Structure
- Proposal
- Structural Depth
- Architectural Breadth
- Construction Breadth
- Conclusion

- Location: 1200 North Children's Avenue, Oklahoma City, Oklahoma
- Occupancy: Office
- Size: 320,000 gsf
- Height: 12 stories for a total of 172 ft.
- Construction Dates: February 2007- Spring 2009
- Building Cost: \$59,760,000
- Delivery Method: Design-Bid-Build

Building Statistics

Introduction

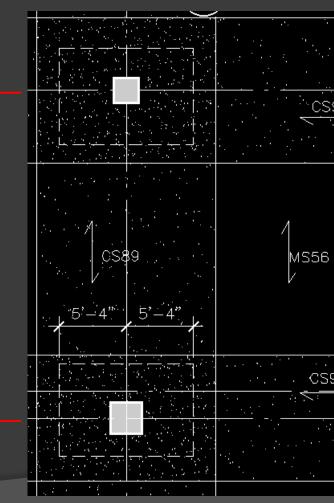
- Building Statistics
- Project Team
- Existing Structure
- Proposal
- Structural Depth
- Architectural Breadth
- Construction Breadth
- Conclusion

- Construction Manager: Flintco, Inc.
- Project Architect: Miles Associates
- Structural Engineer: Zahl-Ford Inc.
- MEP Engineer: ZRHD, P.C.
- Civil Engineer: Smith, Roberts, Baldischwiler, Inc.

Project Team

Owner: University Hospitals Trust

Introduction


- Building Statistics
- Project Team
- Existing Structure
- Proposal
- Structural Depth
- Architectural Breadth
- Construction Breadth
- Conclusion

- Reinforced, cast-in-place concrete
- Foundations
 - Drilled piers, spread footings, and grade beams
- Two way flat slab system with drop panels
 - 10" slab with 4" drop panels
- Exterior Beams

Existing Building Structure

Gravity

26'

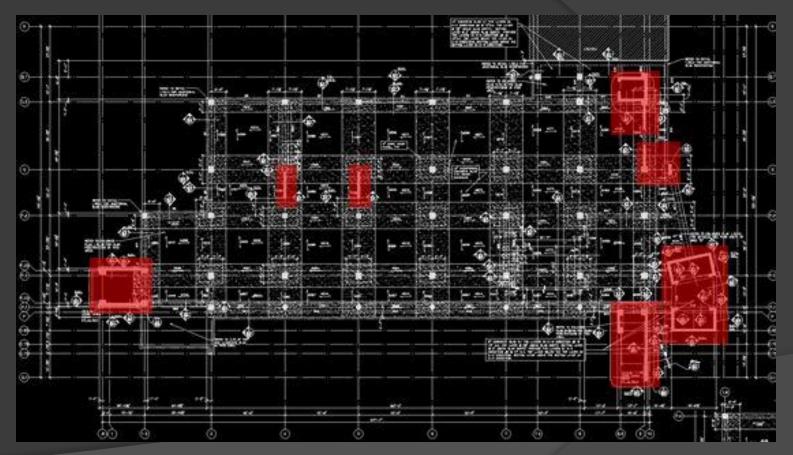
	$\begin{bmatrix} N_{11} & \dots & N_{1N} & N_{1N} & N_{1N} \\ N_{1N} & \dots & N_{1N} & \dots & N_{N} \end{bmatrix} $	la sur la sur la sur La sur la sur
	· · · · · · · · · · · · · · · · · · ·	,
94:		
<u>→</u>		n segunda dari dari sebagi sebagi Tang tersebagi sebagi
		na sente de la sel de la sel No sente de la sel de
	100 g - 10 g	an the shirt of the
	and the second	
MS72	P. A. S.	e de la deserve en la composición de la Composición de la composición de la comp
	CS89	
	. : K. E.	
	· · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,
	<u> </u>	5'-4"
		<u> </u>
94		
	+ +	
and the second second		
		en e

32'

Introduction

- Building Statistics
- Project Team
- Existing Structure
- Proposal
- Structural Depth
- Architectural Breadth
- Construction Breadth
- Conclusion

- Reinforced cast-in-place concrete shear walls


 - Typically 12" thick
- Moment frames located along the floor plan perimeter

Existing Building Structure

Lateral

• Located in stairwells, elevator shafts, and center of floor plan

Lateral Layout

Ν

• Introduction

Proposal

- Problem Statement
- Depth Introduction
- Breadth Introduction
- Structural Depth
- Architectural Breadth
- Construction Breadth
- Conclusion

- Reduce overall building costs
- Reduce the schedule duration
- Develop an economical steel system
- Maintain a low impact on the building architecture

Problem Statement

http://www.metalconstructionnews.com/articles/columns/highflying-inspiration.aspx

- Introduction
- Proposal
- Structural Depth
 - Design Loads
 - RAM Model
 - Composite Steel Redesign
 - Steel Joist Redesign
 - Lateral System Redesign
 - Drift Comparison
- Architectural Breadth
- Construction Breadth
- Conclusion

Design Loads **Gravity Loads**

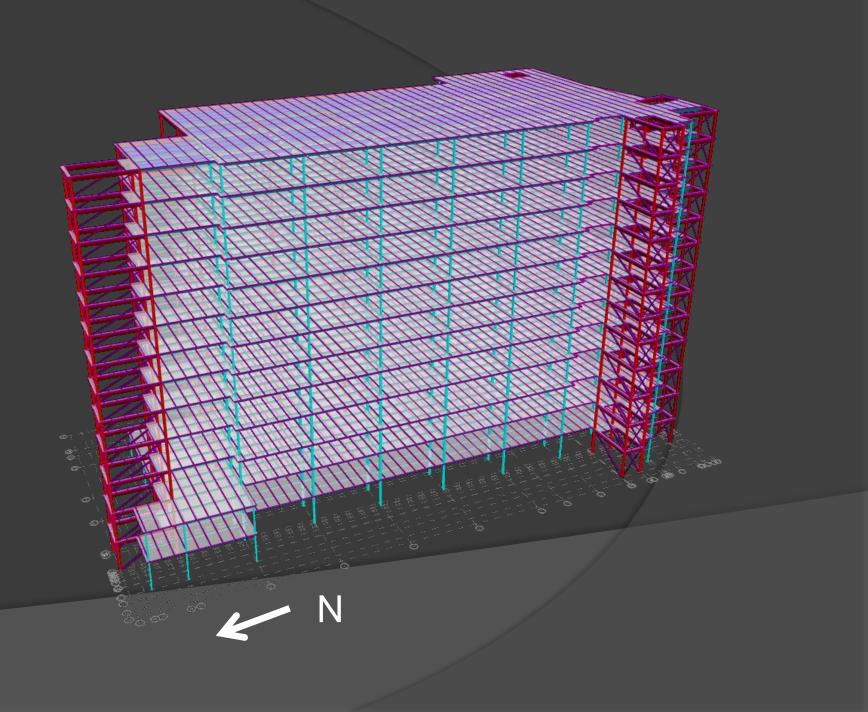
Floors	
Live Load	80 psf
Superimposed Dead Load	15 psf
Flooring	2 psf
Roof	
Roof Live Load	20 psf
Snow Load	10 psf
Green Roof Dead Load	30 psf
Superimposed Dead Load	15 psf
Additional Load	IS
Helicopter Pad Dead Load	8.33 kips
Ambulance Bay Live Load	60 psf

Wind Loads	
Wind N-S	430 kips
Wind E-W	942 kips
Seismic	
Seismic N-S	447 kips
Seismic E-W	447 kips

Lateral Load Base Shears

• Wind E-W controls

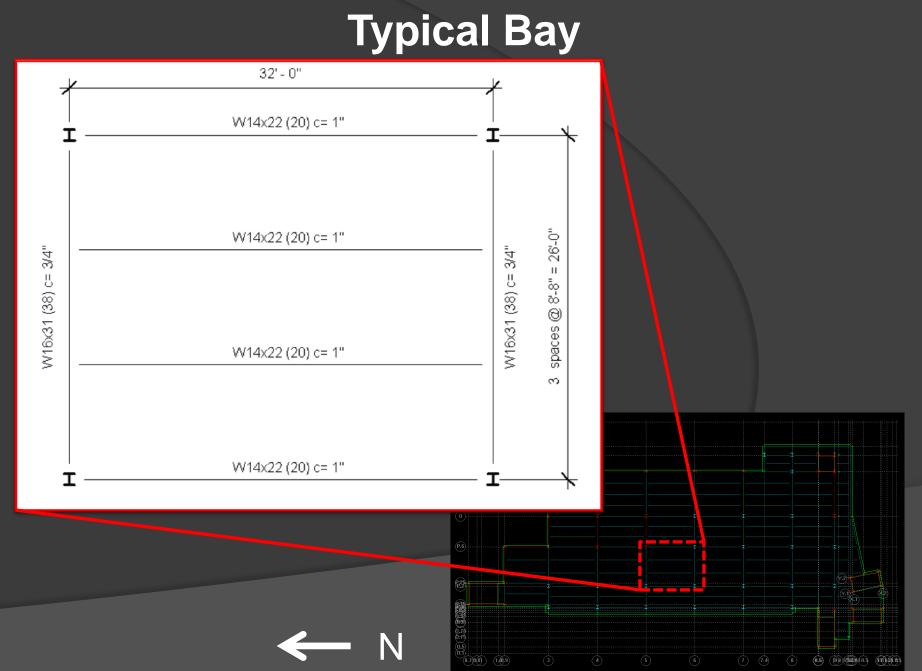
- Introduction
- Proposal
- Structural Depth
 - Design Loads
 - RAM Model
 - Composite Steel Redesign
 - Steel Joist Redesign
 - Lateral System Redesign
 - Drift Comparison
- Architectural Breadth
- Construction Breadth
- Conclusion


- base

RAM Model

Model Assumptions

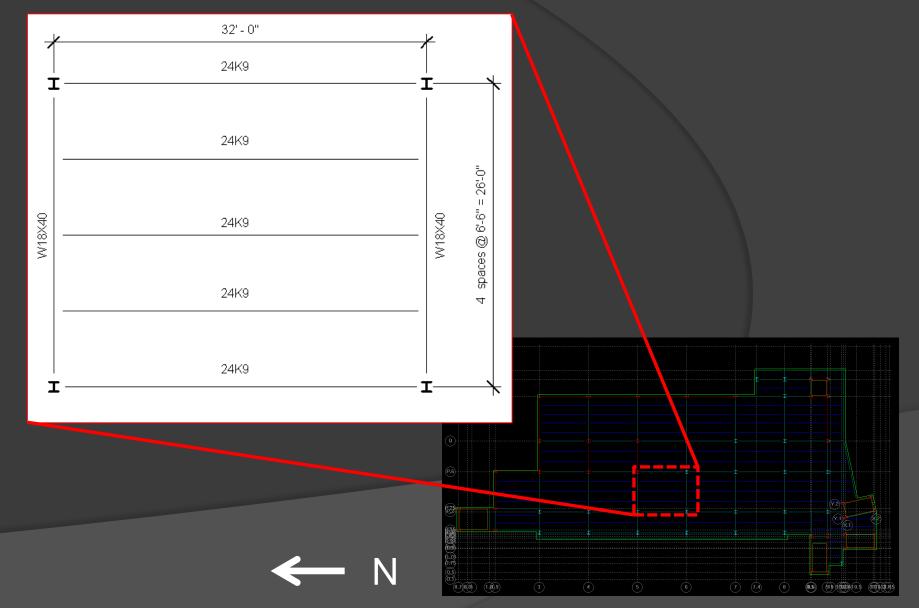
• Columns are considered as pinned connections at the


• Wind Loads are to be applied at the center of pressure • Each floor diaphragm is considered rigid

- Introduction
- Proposal
- Structural Depth
 - Design Loads
 - RAM Model
 - Composite Steel Redesign
 - Steel Joist Redesign
 - Lateral System Redesign
 - Drift Comparison
- Architectural Breadth
- Construction Breadth
- Conclusion

- Typical Bay
 - 1.5 VLR 22 gauge composite deck
 - 3 ¹/₄" lightweight topping
 - Unshored, 3 span construction
 - Beams
 - W14x22 with 20 stude and a 1" camber
 - Girders
 - W16x31 with 38 studs and a $\frac{3}{4}$ " chamber Beams, girders, and columns are to be fireproofed for • a two hour fire rating

Composite Steel Floor Redesign

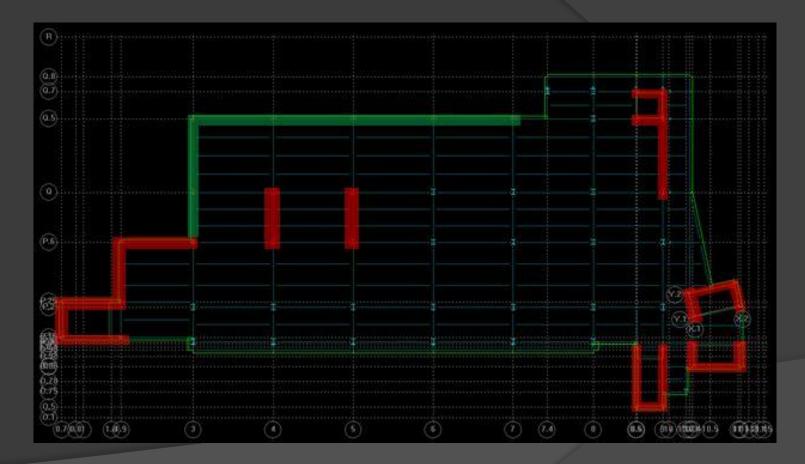

- Introduction
- Proposal
- Structural Depth
 - Design Loads
 - RAM Model
 - Composite Steel Redesign
 - Steel Joist Redesign
 - Lateral System Redesign
 - Drift Comparison
- Architectural Breadth
- Construction Breadth
- Conclusion

Steel Joist Roof Redesign

• Typical Bay

- 1.5 B 22 gauge roofing deck
 - Unshored, 3 span construction
- Joists
 - 24K9 joists
- Girders
 - W18x40
- Roof deck, joists, girders, and columns will be fireproofed for a two hour fire rating

Typical Roof Bay

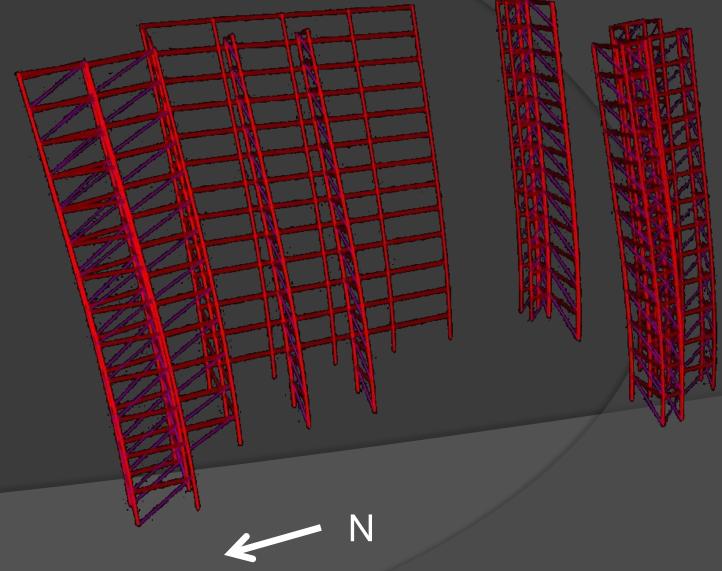

- Introduction
- Proposal
- Structural Depth
 - Design Loads
 - RAM Model
 - Composite Steel Redesign
 - Steel Joist Redesign
 - Lateral System Redesign
 - Drift Comparison
- Architectural Breadth
- Construction Breadth
- Conclusion

Lateral System Redesign

Lateral System Layout

- Concentric, diagonal braced frames
 - Located in existing shear wall locations
- Consists of square HSS steel tubes Additional moment frames are needed
 - Located along the eastern wall
 - Moment frames where used to minimize the impact on the architecture

Concentric Braced Frames Additional Frames


- Introduction
- Proposal
- Structural Depth
 - Design Loads
 - RAM Model
 - Composite Steel Redesign
 - Steel Joist Redesign
 - Lateral System Redesign
 - Drift Comparison
- Architectural Breadth
- Construction Breadth
- Conclusion

- •

Drift Comparison

Existing concrete lateral system drift: 4.77 inches • Proposed steel lateral system drift: 4.75 inches • IBC 2009 allowable building drift: 4.98 inches

Building Drift Under Controlling Case

• Introductio	n
---------------	---

- Proposal
- Structural Depth
- Architectural Breadth
 - Plant selection
 - Material Selection
 - Impact on Structural System
 - Green Roof Cost Analysis
- Construction Breadth
- Conclusion

- Sedum plants are used

Plant Selection

- Oklahoma City hardiness zone: 7a and 7b
 - Identifies the appropriate plants for a specific environment
 - Hardy plants that can survive a variety of different environments
 - Can grow in shallow soil depths
 - Ability to resist droughts

Sedum Floriferum http://macgardens.org /?m=201306

Sedum Oreganum http://www.greatcity.org/

- Introduction
- Proposal
- Structural Depth
- Architectural Breadth
 - Plant selection
 - Material Selection
 - Impact on Structural System
 - Green Roof Cost Analysis
- Construction Breadth
- Conclusion

- Growing Medium
 - Rooflite Extensive MCL
- Filter Fabric
 - Green Roof Solutions FF35
- Drainage Panel

Material Selection

- Green Roof Solutions GRS 32

Image obtained from http://www.vegetalid.us/green-roofsystems/green-roof-101/what-is-a-green-roof

- Introduction
- Proposal
- Structural Depth
- Architectural Breadth
 - Plant selection
 - Material Selection
 - Impact on Structural System
 - Green Roof Cost Analysis
- Construction Breadth
- Conclusion

- Root Barrier
 - Green Roof Solutions RB20
- Waterproof Membrane
 - Kemper System Kempero 2K-PUR
- Rigid Insulation
 - DOW Building Solutions Highload 60 Insulation
- Vapor Barrier
 - Roof Aqua Guard BREA

Material Selection

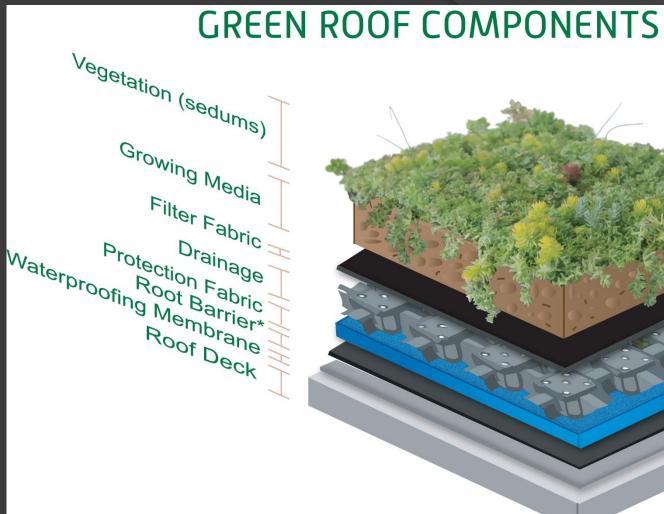


Image obtained from http://www.vegetalid.us/green-roofsystems/green-roof-101/what-is-a-green-roof

- Introduction
- Proposal
- Structural Depth
- Architectural Breadth
 - Plant selection
 - Material Selection
 - Impact on Structural System
 - Green Roof Cost Analysis
- Construction Breadth
- Conclusion

- 30 psf.

Impact on the Structural System

Initial dead load estimation for the green roof was

• The total dead load for the green roof is 22 psf

• The estimated dead load is conservative compared to the actual dead load

Material Vegetation Growing Media Filter Fabric Drainage Panel (Including W **Root Barrier** Water Proof Membrane Total

Weight
2 psf
17 psf
0.024 psf
2 psf
0.05 psf
0.05 psf
22 psf

- Introduction
- Proposal
- Structural Depth
- Architectural Breadth
 - Plant selection
 - Material Selection
 - Impact on Structural System
 - Green Roof Cost Analysis
- Construction Breadth
- Conclusion

- Green roofs have a higher initial costs compared to a standard built up roof
- Using RS Means Cost Construction Data, the total additional cost for the green roof is \$412,000.00

Green Roof Cost Analysis

			Green	Roof	-		
	Unit	Quantity	Waste Factor	Unit Price	Labor	Equipment	Total
Vegetation	S.F.	22705.50	1.00	2.50	0.33	0.00	64256.57
Growing Medium	S.F.	22705.50	1.00	0.25	0.53	0.41	27019.55
Filter Fabric	S.F.	22705.50	1.00	0.26	3.88	0.51	105580.58
Drainage Panel	S.F.	22705.50	1.00	2.70	0.67	0.00	76517.54
Root Barrier	S.F.	22705.50	1.00	0.70	0.77	0.00	33377.09
Water Proof Membrane	S.F.	22705.50	1.00	0.26	3.88	0.51	105580.58
						Total:	\$412,331.88

- Introduction
- Proposal
- Structural Depth
- Architectural Breadth
- Construction Breadth
 - Cost Comparison
 - Schedule Comparison
- Conclusion

- system

Cost of Cond Cost of Form Cost of Reinf Total

Cost Comparison

• Detailed cost analysis using RS Means for each

• Original concrete design estimate: \$9,055,000.00 • Proposed steel design estimate: \$5,125,000.00 • Cost is significantly reduced

Concrete Cost Summary		
crete	\$2,025,000.00	
nwork	\$5,380,000.00	
nforcement	\$1,650,000.00	
	\$9,055,000.00	

Steel Co
Steel Beams
Steel Columns
Steel Braces
Steel Decking
Concrete Topping
Welded Wire Fabric
Steel Joists
Fireproofing
Shear Connectors
Total

ost Summary

\$2,230,000.00 \$1,170,000.00 \$250,000.00 \$756,000.00 \$365,000.00 \$120,000.00 \$29,000.00 \$142,000.00 \$63,000.00 \$5,125,000.00

- Introduction
- Proposal
- Structural Depth
- Architectural Breadth
- Construction Breadth
 - Cost Comparison
 - Schedule Comparison
- Conclusion

- Schedule determined from RS Means
- Original Concrete System
 - Assumed three crews to decrease schedule times
 - 710 days to complete
- Proposed Steel System
 - Assumed one crew erecting the steel
 - 189 days to complete

Schedule Comparison

http://www.projsolco.com/portfolio/healthcare-imagingsolutions

- Introduction
- Proposal
- Structural Depth
- Architectural Breadth
- Construction Breadth
- Conclusion
 - Design Conclusion
 - Acknowledgements
 - Questions

Design Conclusion

Goals

- Reduce overall building costs
- Reduce the schedule duration
- Develop an economical steel system
- Maintain a low impact on the building architecture

Results

- Redesign was more cost effective • The schedule time was reduced • Composite steel with unshored
- construction
- Steel provides an open floor plan • Lateral system has little impact of
- exterior facade

- Introduction
- Proposal
- Structural Depth
- Architectural Breadth
- Construction Breadth
- Conclusion
 - Design Conclusion
 - Acknowledgements
 - Questions

- University Hospitals Trust
- Zahl-Ford Inc.
- Department of Architectural Engineering
- Friends and Family

Acknowledgements

Miles Associates

7fi engineering Structural Solutions that Work

- Introduction
- Proposal
- Structural Depth
- Architectural Breadth
- Construction Breadth
- Conclusion
 - Design Conclusion
 - Acknowledgements
 - Questions

Questions?

